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Rotational effects in Stokes flow; pressure-driven extrusion
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Abstract. This tribute to the late Prof. L.G.N. Filon, who preceded the author as a faculty member of University
College London, is devoted to illustrating the application of Abel transform techniques to mixed boundary prob-
lems. The two situations discussed below, the pressure-driven extrusion through an annular hole in a plane wall and
concentric holes in two planes, have been previously studied as creeping flows but here they are complicated by
being set in a viscous fluid undergoing rigid-body rotation. The analysis, adapted from calculations of the Stokes
drag on a disk sedimenting in a rotating fluid in the presence of fixed boundaries, may not have direct engineering
application but presents classic techniques applied to a set of triple integral equations and a system of dual integral
equations.
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1. Introduction

Many years after the Taylor column was first observed [1], several authors [2–5] investigated
the slow axial motion of a sphere or ellipsoid in a slightly viscous, rotating fluid. Maxworthy
[6, 7] reported experimental results pertaining to these studies and also to the viscosity-
dominated, small-Taylor-number case, considered theoretically by Childress [8]. Weisenborn
[9] gave results that appear to be valid for all Taylor numbers T , the ratio of Coriolis to
viscous forces. With the governing equations non-separable, a boundary-integral approach
was used by Tanzosh and Stone [10] for the drag and velocity fields for axial translation of
spheres and ellipsoids in rotating viscous fluids with 0 ≤ T ≤ 1000. Noticing that disk-and-
plane geometries allow the use of separated functions, Vedensky and Ungarish [11], who fully
described the above-mentioned work, and Ungarish and Vedensky [12] considered the motion
generated by a slowly rising disk in a rotating fluid that is either unbounded or axially bounded
by rotating planes between which the disk is instantaneously centrally placed. With a similar
motive and method, Tanzosh and Stone [13] investigated the corresponding motion generated
when the disk moves in its own plane at right angles to the rotation axis of the unbounded fluid.
These authors used Tranter’s method [14, Section 4.6.3] to solve their dual integral equations
and chose the order of the edge singularity, which was otherwise obvious, to achieve the
best convergence with respect to the truncation of the system of linear equations. Here it is
important, of course, to convert from equations of the first kind to those of the second kind.
Although Tranter’s method uses an infinite sum involving Bessel functions whose arguments
are proportional to T 1/2, an efficient scheme for evaluating integrals of products of such Bessel
functions furnished good agreement with both small- and large-Taylor-number, T , results and
allowed these authors to give their main attention to the physically more interesting case of
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large T . However, the Tranter method cannot cope with a concentric cylindrical bounding
wall for which, along with the above disk-and-plane combinations, Davis [15] reduced sets of
integral equations to sets of integral equations of the second kind by using, as in earlier work
[16–18], the Abel transforms of the pressure, vorticity and tangential-stress discontinuities
at the disk and thereby fixing the order of the rim singularity in each of these jumps. The
method mimicks the boundary-integral method by being equivalent to using distributions,
on the disk, of force singularities which can be readily modified to take account of rigid
boundaries. However, the convergence of the numerical solution of the integral equations
becomes slower as T increases and so only values of T up to 50 could be considered. For
larger T , the Tranter method was used, where applicable, by Davis and Stone [19] who also
considered disk oscillations.

Here the interaction of rotation with pressure-driven flow through a hole in one or more
planes is investigated. The single plane flow, which is reworked to furnish a simple illustration
of the Tranter method, is used as the basis for the annular hole and two plane solutions, as
in [20] and [17], respectively. Otherwise, this analysis mimicks that of Davis [15], with the
two-plane geometry being complementary to that of two disks. The flow through an annular
hole is symmetric about the plane, thus having only a pressure jump which is handled, in
terms of two Abel transforms, as in the non-rotating case [20]. The flow through two rotating
planes requires Abel transforms for the vorticity and tangential-stress discontinuities, while
the pressure jump at each plane is handled as for the single plane, a variation of [17].

2. Pressure-driven flow through a hole in a rotating wall

Incompressible viscous fluid that is rotating with the same angular velocity � as a rigid plane
wall with a hole of radius R, is caused to flow through the hole by the imposition of a pressure
drop �P . Dimensionless cylindrical polar coordinates (r, θ, z) are chosen to be rotating with
the fluid at infinity and so that the hole is at z = 0 (a ≤ r ≤ 1,−π < θ ≤ π) and the flow
is everywhere positive in the direction of the unit vector ẑ. The Reynolds number is assumed
to be sufficiently small for the velocity field R�P v/µ to satisfy the equations of almost rigid
rotation [21, Chapter 1], which might be regarded as the Stokes equations referred to rotating
axes,

2T ẑ × v = −∇p + ∇2v, ∇ · v = 0, (1)

where p�P is the dynamic pressure, µ the coefficient of viscosity and, with ρ the density, the
Taylor number T is defined by

T = �R2ρ

µ
= Q2

2
. (2)

The magnitude of T is irrelevant to the creeping relative flow approximation when there is
no azimuthal dependence [4], since then the rigid-body rotation of the fluid cannot generate
azimuthal convection. In the axisymmetric flows with swirl to be considered, two components
of v can be expressed in terms of a stream function ψ(r, z) by writing

vr = −1

r

∂ψ

∂z
, vz = 1

r

∂ψ

∂r
. (3)

Substitution of (3) in (1) then shows that the momentum equation requires the function ψ(r, z)

to be such that
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[
∂2

∂r2
− 1

r

∂

∂r
+ ∂2

∂z2

]3

ψ = L3
−1ψ = −4T 2 ∂2ψ

∂z2
, (4)

with the dimensionless pressure and swirl velocity successively determined according to

∂p

∂z
= 1

r

∂

∂r
L−1ψ, (5)

2T vθ = ∂p

∂r
+ 1

r

∂

∂z
L−1ψ. (6)

The L−1 notation is taken from generalized axisymmetric potential theory and is often used
for Stokes flows. The boundary conditions to be applied are

vz = 0, vr = 0, vθ = 0, at z = 0 (r > 1), (7)

p ∼ −1

2
sgnz as |z| → ∞, (8)

[p]0+
0− = 0, at z = 0 (0 ≤ r < 1), (9)

corresponding, respectively, to no slip on the wall, the imposed pressure drop and continuity of
pressure in the hole. The problem posed by the rotating system, with non-separable equations
for ψ, vθ but separate boundary conditions, differs from that posed by, for example, creeping
transverse flow past a body of revolution in which functions ψ,φ are governed by L2

−1ψ =
0 = L−1φ but the boundary conditions are non-separable.

In the absence of rotation, the swirl velocity vθ = 0 in the Sampson flow [22] and (4) is
replaced by L2

−1ψ = 0, whose solution, for an everywhere continuous velocity field that is
symmetric about z = 0, is given, in terms of the usual Hankel transform, by

ψ = r

2π

∫ ∞

0
A(k)J1(kr)(k−1 + |z|)e−k|z| dk. (10)

Since the only boundary is at z = 0, the simpler representation,

v = φẑ − z∇φ, p = −2
∂φ

∂z
,

where ∇2φ = 0, suffices, with

φ = 1

4

[
|z| + 2

π

∫ ∞

0
A(k)J0(kr)e−k|z| dk

]
. (11)

The two formulations yield the same conditions on A(k), whence it is found that

A(k) = d

dk

(
−sin k

k

)
, [p]0+

0− = − 2

π

[
cos−1

(
1

r

)
+ 1√

r2 − 1

]
(r > 1), (12)

and the dimensionless flux is 1/3. Note the square-root rim singularity in the pressure jump.
The use of the Laplacian φ is precluded by rotation and the solution of (4) requires the

prior definition, for κ > 0, of λ1(κ) (−1 < λ1 < 0), λ2(κ) and λ3(κ) (λ3 = λ2) to be the roots
of

λ3 + κ−4(λ + 1) = 0. (13)
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Then, on setting

η1(κ) = λ1(λ2 − λ3), η2(κ) = λ2(λ3 − λ1), η3(κ) = λ3(λ1 − λ2),

�(κ) = (λ2 − λ3)(λ3 − λ1)(λ1 − λ2), (14)

it follows that

3∑
j=1

ηj

λj

= 0 =
3∑

j=1

ηj (15)

and also, from (14) and (15), that

3∑
j=1

ηjλj

λj + 1
=

3∑
j=1

ηjλj = −�. (16)

With these functions and identities, it may be shown that a solution of (4) that yields an
everywhere continuous velocity field that is symmetric about z = 0, is given by

ψ = r

π

∫ ∞

0

J1(kr)

k�(k/Q)
A(k)

3∑
j=1

ηj (k/Q)√
λj + 1

e−k|z|√λj +1 dk, (17)

where Q is defined by (2) and the expression (10) is recovered in the limit Q → 0 since
λj (κ) → 0 (j = 1, 2, 3) as κ → ∞. Then vr and vz are readily deduced from (3), while (5)
and (6) imply that

vθ = Q2

π
sgnz

∫ ∞

0

J1(kr)

k2�(k/Q)
A(k)

3∑
j=1

ηj

λj

e−k|z|√λj+1 dk,

p = −sgnz

[
1

2
+ 1

π

∫ ∞

0
J0(kr)

kA(k)

�(k/Q)

3∑
j=1

ηjλj

λj + 1
e−k|z|√λj +1 dk

]
. (18)

Only the pressure has a discontinuity at z = 0, given, after using (16), by

[p]0+
0− = −1 + 2

π

∫ ∞

0
kJ0(kr)A(k) dk.

This is confined to the wall by imposing the condition,

2

π

∫ ∞

0
kJ0(kr)A(k)dk = 1 (0 ≤ r < 1), (19)

which, by use of the identity [23, Section 6.554],∫ u

0
J0(kr)

rdr

(u2 − r2)1/2
= sin ku

k
, (20)

may be expressed as

2

π

∫ ∞

0
A(k) sin ku dk = u (0 ≤ u < 1). (21)
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Symmetry of the flow about z = 0 ensures that vr, vθ satisfy the no-slip conditions (7), whose
remaining requirement is, according to (3) and (17),

vz(r, 0) = 1

π

∫ ∞

0

J0(kr)

�(k/Q)
A(k)

3∑
j=1

ηj (k/Q)√
λj + 1

dk = 0 (r > 1). (22)

Just as (17) reduces to (10) in the limit Q → 0, so condition (22) reduces to (2π)−1
∫ ∞

0
J0(kr)A(k)dk = 0(r > 1), in accordance with the Sampson flow. With this limit in mind,
define

�(κ) = 1 − 2

�(κ)

3∑
j=1

ηj (κ)√
λj (κ) + 1

∼
{

1 − 2κ2 as κ → 0

5/64κ4 as κ → ∞ (23)

Use of (13) with the identities (15) and (16) shows that

3∑
j=1

ηjλ
2
j = 0,

3∑
j=1

ηjλ
3
j =

3∑
j=1

ηjλ
4
j = − 1

k4

3∑
j=1

ηjλj = �

k4

and hence �(κ) = O(κ−4) as κ → ∞. It can also be noted from (13) that

λ1 ∼ −1 + κ4, λ2 ∼ κ−2i + 1

2
as κ → 0, (24)

so that λ1 increases from −1 to 0 as κ goes from 0 to ∞, with

λ2 = −1

2
λ1 + i(

3

4
λ2

1 + κ−4)1/2, λ3 = λ2. (25)

Thus
√

λj + 1 → 1(j = 1, 2, 3) as κ → ∞ while√
λ1 + 1 ∼ κ2

√
λ2 + 1 ∼ κ−1eiπ/4 as κ → 0.

The condition (22) is automatically satisfied by setting, as in [20],

A(k) = 2

�(k/Q)

3∑
j=1

ηj (k/Q)√
λj + 1

=
∫ 1

0
t−1F(t) sin kt dt, (26)

whose substitution in the pressure-continuity condition (21) yields, in terms of the function
�(κ) defined by (23), the integral equation

F(u)

u
+ 2

π

∫ 1

0

F(t)

t

∫ ∞

0
sin ku sin kt

�(k/Q)

1 − �(k/Q)
dkdt = u (0 ≤ u < 1). (27)

The velocity profile in the hole and the consequent dimensionless flux are given, respectively,
by

vz(r, 0) = 1

2π

∫ 1

r

F (t)dt

t (t2 − r2)1/2
, M =

∫ 1

0
F(t)dt. (28)

In the limit Q → 0, (27) and (28) yield F(t) = t2, vz(r, 0) = (2π)−1(1−r2)1/2 and M = 1/3,
consistent with the Sampson (non-rotating) flow.

The integral equation (27) possesses an iterative solution for small enough values of Q.
Indeed, the kernel
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2

π

∫ ∞

0
sin ku sin kt

�(k/Q)

1 − �(k/Q)
dk ∼ 2Q3ut

π

∫ ∞

0

κ2�(κ)

1 − �(κ)
dκ

and hence, at this order, F(t) and thus vz(r, 0) and M are reduced by the factor

1 − 2Q3

3π

∫ ∞

0

κ2�(κ)

1 − �(κ)
dκ.

The asymptotic estimates in (23) ensure convergence of the integral and suggest the approxi-
mation

�(κ)

1 − �(κ)
� 1

2κ2(1 + 32κ2/5)
,

which yields the fractional reduction T 3/2
√

5/12 � 0·186T 3/2, due to the rotation.
The solutions of the two title problems discussed below are best constructed as perturba-

tions of one or two superposed ‘Sampson flows with rotation’. For this, the above velocity
field and associated functions are denoted by v∗, A∗, F ∗.

2.1. TRANTER’S METHOD

It is of interest to demonstrate, via the above symmetric case, that Tranter’s method has a
fundamentally similar solution structure. First, continuity of pressure in the hole is imposed
by multiplying (19) by


(n + 1)


(n + 3/2)

(
1 − r2

2

)1/2

rF (
3

2
, 1; r2),

where, in the notation of [14, Equation 2.1.21], F denotes a Jacobi polynomial, and integrat-
ing from r = 0 to r = 1. This yields

2

π

∫ ∞

0
k
J2n+3/2(k)

k3/2
A(k)dk =

(
2

π

)1/2
δn0

3
(n ≥ 0). (29)

Then the no slip condition is identically satisfied by the representation

A(k)
2

�(k/Q)

3∑
j=1

ηj (k/Q)√
λj + 1

=
(

2π

k

)1/2 ∞∑
m=0

amJ2m+3/2(k). (30)

Hence (29) can be rearranged as

an

4n + 3
+

∞∑
m=0

am

∫ ∞

0

�(k/Q)

1 − �(k/Q)

1

k
J2n+3/2(k)J2m+3/2(k)dk = δn0

6
(n ≥ 0), (31)

after substitution of (30) and use of the identity [23, Section 6.538]∫ ∞

0

1

k
J2n+3/2(k)J2m+3/2(k)dk = δnm

4n + 3
(n,m ≥ 0).

The dimensionless flux M is now given by

M =
∫ ∞

0

J1(k)

k

(
2π

k

)1/2 ∞∑
m=0

amJ2m+3/2(k)dk = 2

3
a0,
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by use of the identity [23, Section 6.574]∫ ∞

0
Jν(x)Jν+2m+1/2(x)

(
2

x

)3/2

dx = 
(ν)


(ν + 3
2 )

δm0.

The system (31) reduces, in the limit Q → 0, to an exact diagonal system with solution
a0 = 1

2 , an = 0(n ≥ 1), thus recovering the flux 1
3 in the classic Sampson flow.

Neither method is applicable when two rims are present (triple equations), as in Section 3,
but Tranter’s method can be used for non-symmetric flows [19]. Provided the integrals in-
volving Bessel functions can be accurately evaluated, Tranter’s method has the advantage of
directly obtaining a linear system of equations.

3. Pressure-driven flow through an annular hole in a rotating wall

Suppose now that there is a pressure-driven flow is through an annular hole of radii aR,R(a <

1), situated at z = 0(a ≤ r ≤ 1,−π < θ ≤ π). When the total velocity field is written as
v∗(r, z) − v(r, z), the optimal strategy, the perturbation flow v due to the partial blocking
of the hole has a stream function given by (17) and associated pressure field given by (18).
The imposition of no-slip and continuous pressure yield modified versions of (19) and (22),
namely

[p]0+
0− = 2

π

∫ ∞

0
kJ0(kr)A(k)dk = 0 (a < r < 1), (32)

vz(r, 0) = 1

π

∫ ∞

0

J0(kr)

�(k/Q)
A(k)

3∑
j=1

ηj (k/Q)√
λj + 1

dk =
{

v∗
z (r, 0) (0 ≤ r < a)

0 (r > 1)
(33)

Equations (32) and (33) constitute a set of triple integral equations [14, Chapter 6]. Since
the existence of two rims precludes the representation (26), the solution by use of Abel trans-
forms proceeds by introducing such to satisfy (32), inverting the resultant Hankel transform
and substituting for A(k) in (33) to obtain integral equations for the transform functions.
The pressure discontinuity is allowed, according to a local similarity solution, square-root
singularities at the rims, as demonstrated above for the circular hole. Hence, let new functions
S(t) and X(t) be defined [17, 20] by

[p]0+
0− = − 2

πr

d

dr

∫ a

r

tS(t)

(t2 − r2)1/2
dt (0 ≤ r < a),

[p]0+
0− = − 2

π

d

dr

∫ r

1

tX(t)

(r2 − t2)1/2
dt (r > 1). (34)

The first of Equations (34) shows immediately that the dimensional force 4aR2(�P )FD ẑ
exerted by the fluid on the disk is such that

FD = 1

a

∫ a

0
S(t)dt, (35)

an advantage of the Abel transforms that was exploited in earlier calculations involving disks.
Thus S(t) is identified as a dimensionless density function for a distribution of rings of point
forces acting on the fluid in the −ẑ-direction. Equations (32) and (34) enable the Hankel
transform to be inverted, yielding
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A(k) =
∫ a

0
S(t) cos kt dt −

∫ ∞

1
X(t) sin kt dt (k > 0). (36)

Equations for the functions S(t), X(t) are obtained by imposing (33), which by using the
derivative of (20) and the additional identity [23, Section 6.554]

d

du

∫ ∞

u

J0(kr)
rdr

(r2 − u2)1/2
= − sin ku, (37)

shows that no flow through the wall is achieved by setting∫ ∞

0
A(k) cos ku dk =

∫ ∞

0
A(k)�(k/Q) cos ku dk + 2π

d

du

∫ u

0

rv∗
z (r, 0)

(u2 − r2)1/2
dr

=
∫ ∞

0
A(k)�(k/Q) cos ku dk + 1

2

d

du

∫ 1

0

F ∗(t)
t

log

(
t + u

|t − u|
)

dt (0 ≤ r < a),

∫ ∞

0
A(k) sin ku dk =

∫ ∞

0
A(k)�(k/Q) sin ku dk (u > 1), (38)

where �(κ) is defined by (23) and (26) has been substituted. In the non-rotating limit, F ∗(t) =
t2 and the forcing term reduces to −1 − u

2 log
(

1+u
1−u

)
, as in [20].

On substitution of (36) in Equations (38), the left-hand sides can be simplified, as in [20],
to yield the pair of integral equations

1

2

d

du

∫ 1

0

F ∗(t)
t

log

(
t + u

|t − u|
)

dt − π

2
S(u) +

∫ ∞

1
X(t)

t

t2 − u2
dt =

∫ ∞

0

[
−

∫ a

0
S(t) cos ktdt +

∫ ∞

1
X(t) sin kt dt

]
�(k/Q) cos ku dk (0 ≤ u < a),

(39)

π

2
X(u) −

∫ a

0
S(t)

u

u2 − t2
dt =

∫ ∞

0

[
−

∫ a

0
S(t) cos kt dt +

∫ ∞

1
X(t) sin kt dt

]
�(k/Q) sin ku dk (u > 1).

(40)

To evaluate the flux of fluid through the annular hole, consider the velocity profile in the
hole z = 0, a < r < 1. With the definition (23), (28) and (33) yield

v∗
z (r, 0) − vz(r, 0) = 1

2π

∫ 1

r

F ∗(t)dt

t (t2 − r2)1/2
− 1

2π

∫ ∞

0
J0(kr)A(k)[1 − �(k/Q)]dk. (41)

But the substitution of (40) allows (36) to be rewritten as

A(k) =
∫ a

0
S(t) cos kt dt− 2

π

∫ ∞

1

[∫ a

0
S(t)

u

u2 − t2
dt−

∫ ∞

0
A(K)�(K/Q) sin Ku dK

]
sin ku du

=A(k)�(k/Q)+ 2

π

∫ 1

0

[∫ a

0
S(t)

u

u2 − t2
dt−

∫ ∞

0
A(K)�(K/Q) sin Ku dK

]
sin ku du,

(k > 0).
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This effects a simplification in (41) which facilitates closed-form evaluations of the Bessel-
function integrals, yielding

v∗
z (r, 0) − vz(r, 0) = 1

2π

∫ 1

r

F ∗(t)dt

t (t2 − r2)1/2
− 1

π2

∫ 1

r

du

(u2 − r2)1/2

[∫ a

0
S(t)

u

u2 − t2
dt

−
∫ ∞

0
A(k)�(k/Q) sin ku dk

]
, (a < r < 1).

Thus the dimensional flux MR3�P/µ is given by

M = − 2

π

∫ a

0
S(t)

{
(1 − a2)1/2 − (a2 − t2)1/2 arcsin

[(
1 − a2

1 − t2

)1/2
]}

dt

+
∫ 1

a

F ∗(t)
t

(t2 − a2)1/2dt + 2

π

∫ ∞

0
A(k)�(k/Q)

∫ 1

a

(u2 − a2)1/2 sin ku du dk,

(42)

in which A(k) is given in terms of S,X by (36). Comparison with [20, Equation (3.12)], shows
that the effects of rotation are to modify both F ∗(t) and S(t) and to add the last integral, which
contains the effects of both the rotation and the partially blocked hole.

The O(Q) perturbation can be calculated from the approximate forms of Equations (39)
and (40):

1 − u

2
log

(
1 + u

1 − u

)
− π

2
S(u) +

∫ ∞

1
X(t)

t

t2 − u2
dt =

−Q

∫ a

0
S(t)dt

∫ ∞

0
�(κ)dκ (0 ≤ u < a),

π

2
X(u) −

∫ a

0
S(t)

u

u2 − t2
dt = 0, (r > 1),

from which X(t) can be eliminated, as in [20], to yield an integral equation for S(u). On
setting �(κ) � (1 + 64κ2/5)−1, in accordance with (23), and writing

S(u) � S0(u) + Qa
51/4

4
C0S1(u),

where S0(u) is the zero-order solution given by [20] and C0(a) is its mean value, it is found
that S1(u) satisfies

S1(u) − 2

π2

∫ a

0
S1(v)

[
u log

(
1 + u

1 − u

)
− v log

(
1 + v

1 − v

)]
dv

u2 − v2
= 1 (0 ≤ u < a). (43)

According to (35) and (42), the dimensionless force on the disk and flux through the annular
hole are given, in this approximation, by

FD = C0 +
[
Qa

51/4

4
C0

]
C1, M = M0 −

[
Qa

51/4

4
C0

]
M1,

where, by numerical solution of (43), C1 and M1 take values 1, 1·14, 1·36, 1·96 and 0, 0·14,
0·17, 0·068 at a = 0, 0·3, 0·6, 0·9, respectively. The previously computed C0,M0 are such that
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C0 increases almost linearly from 2/π to π/4 and M0(1 − a2)−3/2 decreases almost linearly
from 1/3 to 0 as a increases from 0 to 1. M1 → 0 less rapidly than M0 as a → 1.

4. Pressure-driven flow through two planes

Suppose that there is a pressure drop �P across each of two thin rigid planes at z = ±H

(dimensional separation 2HR), with concentric holes of unit dimensionless radius centered
on the z-axis. Then the flow relative to the rotating axes is v∗(r, z−H)+v∗(r, z+H)−v(r, z),
with v(r, z) described by the stream function ψ(r, z), even in z, given by

ψ = r

π

∫ ∞

0

J1(kr)

k�(k/Q)

3∑
j=1

ηj (k/Q)e−k(|z|−H)
√

λj+1

[
A(k)√
λj + 1

+ B(k) − Q2C(k)

k2λj

]
dk,

(|z| < H), (44)

ψ = r

π

∫ ∞

0

J1(kr)

k�(k/Q)

3∑
j=1

ηj (k/Q) cosh (kz
√

λj + 1)

[
A1(k)√

λj + 1 sinh(kH
√

λj + 1)

−
{
B1(k) − Q2C1(k)

k2λj

}
1

cosh(kH
√

λj + 1)

]
dk, (|z| < H),

(45)

in which, compared to (17), functions that generate non-zero values of vr, vθ at the walls must
now be included because neither lies in a plane of symmetry of the flow. Then it is readily
deduced from (3), (5) and (6) that

vz, L−1ψ, vr, p, vθ ,

differ from the ψ expressions in (44) and (45) by having the factor rJ (kr)/k replaced by

J0(kr), rkJ1(kr)λj , sgnzJ1(kr)
√

λ1 + 1, −sgnzkJ0(kr)
λj√

λ1 + 1
,

−sgnz
k2

Q2
J1(kr)

λ2
j√

λj + 1
= sgnz

Q2

k2
J1(kr)

√
λj + 1

λj

, (|z| > H),

respectively, or the factor r[J1(kr)/k] cosh(kz
√

λj + 1) by[
J0(kr), rkJ1(kr)λj

]
cosh(kz

√
λj + 1),[

−J1(kr)
√

λj + 1, kJ0(kr)
λj√

λj + 1
, −Q2

k2
J1(kr)

√
λj + 1

λj

]
sinh(kz

√
λj + 1),

(|z| < H),

respectively. Evidently, the appearance of the hyperbolic functions complicates the subsequent
algebra, whose presentation is abbreviated by defining the following sums:

�0(κ) = 2

�(κ)

3∑
j=1

ηj (κ)√
λj + 1

, �0H(κ,QH) = 2

�(κ)

3∑
j=1

ηj (κ)√
λj + 1

e−2κQH
√

λj +1,
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�1(κ) = 2

�(κ)

3∑
j=1

ηj (κ)λj√
λj + 1

, �2(κ) = 2

�(κ)

3∑
j=1

ηj (κ)

λj

√
λj + 1,

[
σ0c(κ,QH) σ1c(κ,QH) σ2c(κ,QH)

σ0t (κ,QH) σ1t (κ,QH) σ2t (κ,QH)

]
=

2

�(κ)

3∑
j=1

ηj (κ)

[
1√

λj + 1
,

λj√
λj + 1

,

√
λj + 1

λj

][
coth(κQH

√
λj + 1) − 1

1 − tanh(κQH
√

λj + 1)

]
.

Equations relating the functions A1, B1, C1 and A,B,C are obtained by imposing continuity
of v at z = H . Thus the velocity components derived from (44), (45) show that

A1(k)[�0(k/Q) + σ0c(k/Q,QH)] = A(k)�0(k/Q),

B1(k)[�0(k/Q) + �1(k/Q) − σ0t (k/Q,QH) − σ1t (k/Q,QH)]−
Q2

k2
C1(k)[�2(k/Q)−σ2t(k/Q,QH)]=B(k)[�0(k/Q)+�1(k/Q)]−Q2

k2
C(k)�2(k/Q),

Q2

k2
B1(k)[�2(k/Q) − σ2t (k/Q,QH)] + C1(k)[�1(k/Q) − σ1t (k/Q,QH)]

= Q2

k2
B(k)�2(k/Q) + C(k)�1(k/Q).

It is also convenient to write

δA = A − A1, δB = B − B1, δC = C − C,

and introduce the matrices

M(κ) =
[

�0(κ) + �1(κ) − 1
κ2 �2(κ)

1
κ2 �2(κ,QH) �1(κ)

]
,

Mt(κ,QH) =
[

σ0t (κ,QH) + σ1t (κ,QH) − 1
κ2 σ2t (κ,QH)

1
κ2 σ2t (κ,QH) σ1t (κ,QH)

]
.

Then

δA(k) = σ0c(k/Q,QH)

�0(k/Q)
A1(k),

[
δB(k)

δC(k)

]
= −M−1(k/Q)Mt(k/Q,QH)

[
B1(k)

C1(k)

]
. (46)

The pressure, vorticity and tangential stress discontinuities at z = H , derived from (44),
(45), reduce, because (13), (15) and (16), to

[p]H+
H− = 1

π

∫ ∞

0
kJ0(kr){A(k) + A1(k) − 1

2
[δB(k)�1(k/Q) + B1(k)σ1t (k/Q,QH)]

+ Q2

2k2
[δC(k)�1(k/Q) + C1(k)σ1t (k/Q,QH)]}dk,

(47)
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[−r−1L−1ψ]H+
H− = 1

π

∫ ∞

0
kJ1(kr){B(k) + B1(k) − 1

2
[δA(k)�1(k/Q) −

A1(k)σ1c(k/Q,QH)]}dk

[
∂vθ

∂z

]H+

H−
= 1

π

∫ ∞

0
kJ1(kr){C(k) + C1(k) − Q2

2k2
[δA(k)�2(k/Q) −

A1(k)σ2c(k/Q,QH)]}dk. (48)

The mixed-boundary-value problem, which determines the functions A1(k), B1(k), C1(k),
is formulated by setting the three velocity components to zero in r > 1 and eliminating the
stress discontinuities in r < 1. The pressure discontinuity and normal velocity can be handled
by the simpler method employed above for the circular hole but the tangential velocities and
the vorticity and tangential stress discontinuities require the use of Abel transforms. These
latter discontinuities are confined to the wall (r > 1), with square-root singularities at the rim,
by defining [15] new functions W(t) and Y (t) by[ −r−1L−1ψ

∂vθ/∂z

]H+

H−
= − 2

π

d

dr

∫ r

1

[
W(t)

Y (t)

]
dt

(r2 − t2)1/2
, (r > 1). (49)

Then the inversion of the Hankel transforms in Equations (48), followed by use of the addi-
tional identity [23, Section 6.552]

d

du

∫ ∞

0
J1(kr)

udr

(r2 − u2)1/2
= cos ku, (50)

yields[
δB(k) + 2B1(k) − 1

2 [δA(k)�1(k/Q) − A1(k)σ1c(k/Q,QH)]
δC(k) + 2C1(k) − Q2

2k2 [δA(k)�2(k/Q) − A1(k)σ2c(k/Q,QH)]

]

= 2
∫ ∞

1

[
W(t)

Y (t)

]
cos kt dt (k > 0).

Thus[
B1(k)

C1(k)

]
= [2M(k/Q) − Mt(k/Q)]−1M(k/Q)

{
2
∫ ∞

1

[
W(t)

Y (t)

]
cos kt dt

+1

2

[
�1(k/Q)

�0(k/Q)
σ0c(k/Q,QH) − σ1c(k/Q,QH)

Q2

2k2

[
�2(k/Q)

�0(k/Q)
σ0c(k/Q,QH) − σ2c(k/Q,QH)

] ]
A1(k)

} (51)

Mimicking Section 2, the no-slip condition,

vz(r,H) = v∗
z (r,H) = 1

2

∫ ∞

0
J0(kr)A∗(k)�0H(k/Q,QH) dk (r > 1),

is satisfied by setting, by reference to (22), (26),

A(k)�0(k/Q) = A∗(k)�0H(k/Q,QH) −
∫ 1

0
t−1F(t) sin kt dt (k > 0), (52)
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whence the total dimensionless flux through each hole is given by

M =
∫ 1

0
[F ∗(k) + F(t)]dt. (53)

Equations for the functions F(t)(0 ≤ t < 1) and W(t), Y (t)(t > 1) are obtained by
imposing pressure continuity at 0 ≤ r < 1 and the remaining no-slip conditions at the wall
r > 1. The equation corresponding to (27) is found, from (47), to be∫ ∞

0
sin ku

{[
2+σ0c(k/Q,QH)

�0(k/Q)

]
A1(k)+ 1

2

〈[
�1(k/Q),−Q2

k2
�0(k/Q)

]
M(k/Q)−1Mt(k/Q)

−[σ1t (k/Q,QH),−Q2

k2
σ0t (k/Q,QH)]

〉} [
B1(k)

C1(k)

]
dk = 0 (0 ≤ u < 1), (54)

after substitution of (46). The conditions

vr(r,H) = v∗
r (r,H), vθ (r,H) = v∗

θ (r,H),

with the velocities derived from (44) and (17), reduce, after application of (50) and further
substitution of (46), to∫ ∞

0
cos ku[M(k/Q) − Mt(k/Q)]

[
B1(k)

C1(k)

]

=
∫ ∞

0

cos ku

�(κ)

3∑
j=1

ηj (k)√
λj + 1

e−2κQH)
√

λj +1

[
1
Q2

k2λj

]
A∗(k) dk (u > 1).

(55)

On substitution of (51), (52) in (54), (55), a set of integral equations for F(t)(0 ≤ t < 1) and
W(t), Y (t)(t > 1) is obtained. Only F(t) is required for determining the flux, according to
(53).

5. Conclusions

Two problems in rotating, viscous fluids have each been reduced, by use of Abel transforms,
to the solution of sets of integral equations. Earlier, the pressure-driven flow through a hole
in a rotating plane was determined by reduction to an integral equation or a set of linear
equations. It was shown that the introduction of rotation initially reduces the flux from its
value in the classic Sampson flow. Tranter’s method can be applied to the two-plane problem
but not to the annular hole because it can cope with only one edge. When applicable, it has
the advantage that a linear system of equations, albeit with coefficients that are numerically
evaluated integrals, presents less computational difficulty than sets of integral equations that
not only have numerically evaluated kernels but also must be discretized.
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